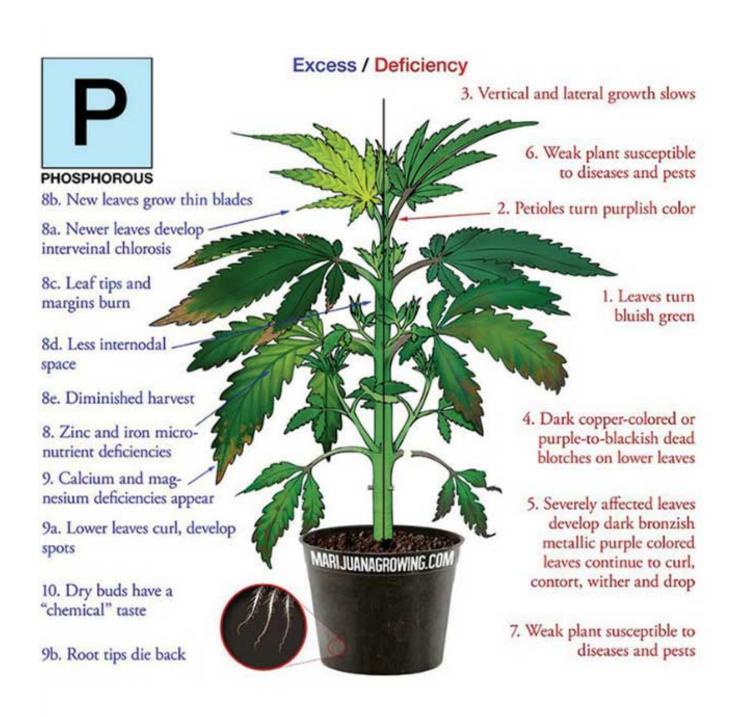
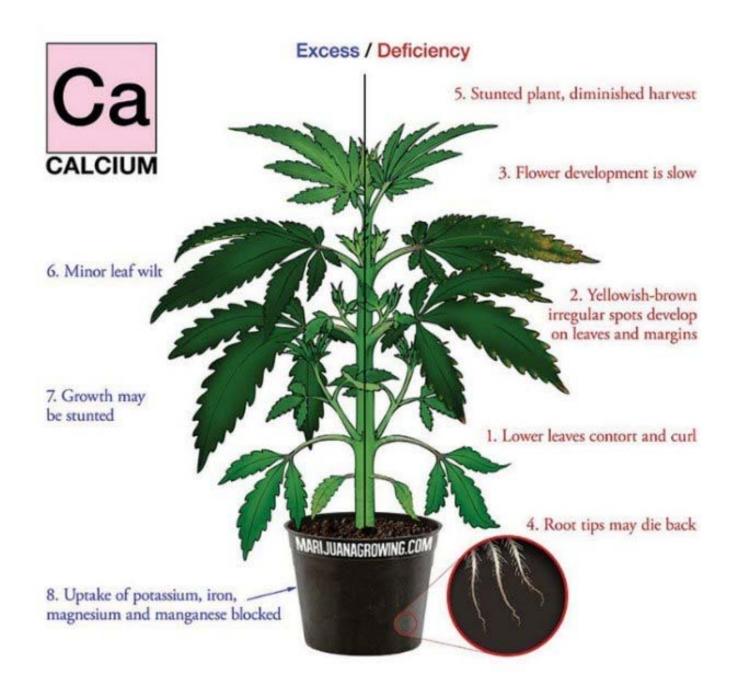
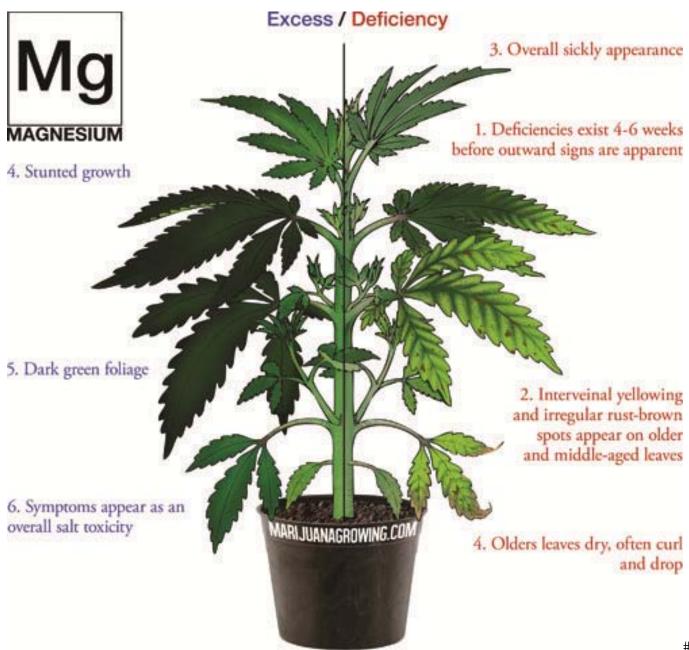


GUIDE TO TERPENES



Leafly





	TDS	5 KCI	TDS 640		442 ^{тм}		
EC	Low KCI	High KCI	Eutech TDS 640	HANNA 98300 Low 442	Most common 442	High 442	CF
mS/cm	0.5 (x500)	0.57 (x 570)	0.64 (x 640)	0.65 (x 650)	0.70 (x 700)	0.85 (x 850)	x10
0.1	50 ppm	57 ppm	64 ppm	65 ppm	70 ppm	85 ppm	1
0.2	100 ppm	114 ppm	128 ppm	130 ppm	140 ppm	170 ppm	2
0.3	150 ppm	171 ppm	192 ppm	195 ppm	210 ppm	255 ppm	3
0.4	200 ppm	228 ppm	256 ppm	260 ppm	280 ppm	340 ppm	4
0.5	250 ppm	285 ppm	320 ppm	325 ppm	350 ppm	425 ppm	5
0.6	300 ppm	342 ppm	384 ppm	390 ppm	420 ppm	510 ppm	6
0.7	350 ppm	399 ppm	448 ppm	455 ppm	490 ppm	595 ppm	7
0.8	400 ppm	456 ppm	512 ppm	520 ppm	560 ppm	680 ppm	8
0.9	450 ppm	513 ppm	576 ppm	585 ppm	630 ppm	765 ppm	9
1.0	500 ppm	570 ppm	640 ppm	650 ppm	700 ppm	850 ppm	10
1.1	550 ppm	627 ppm	704 ppm	715 ppm	770 ppm	935 ppm	11
1.2	600 ppm	684 ppm	768 ppm	780 ppm	840 ppm	1020 ppm	12
1.3	650 ppm	741 ppm	832 ppm	845 ppm	910 ppm	1105 ppm	13
1.4	700 ppm	798 ppm	896 ppm	910 ppm	980 ppm	1190 ppm	14
1.5	750 ppm	855 ppm	960 ppm	975 ppm	1050 ppm	1275 ppm	15
1.6	800 ppm	912 ppm	1024 ppm	1040 ppm	1120 ppm	1360 ppm	16
1.7	850 ppm	969 ppm	1088 ppm	1105 ppm	1190 ppm	1445 ppm	17
1.8	900 ppm	1026 ppm	1152 ppm	1170 ppm	1260 ppm	1530 ppm	18
1.9	950 ppm	1083 ppm	1216 ppm	1235 ppm	1330 ppm	1615 ppm	19
2.0	1000 ppm	1140 ppm	1280 ppm	1300 ppm	1400 ppm	1700 ppm	20
2.1	1050 ppm	1197 ppm	1334 ppm	1365 ppm	1470 ppm	1785 ppm	21
2.2	1100 ppm	1254 ppm	1408 ppm	1430 ppm	1540 ppm	1870 ppm	22
2.3	1150 ppm	1311 ppm	1472 ppm	1495 ppm	1610 ppm	1955 ppm	23
2.4	1200 ppm	1368 ppm	1536 ppm	1560 ppm	1680 ppm	2040 ppm	24
2.5	1250 ppm	1425 ppm	1600 ppm	1625 ppm	1750 ppm	2125 ppm	25
2.6	1300 ppm	1482 ppm	1664 ppm	1690 ppm	1820 ppm	2210 ppm	26
2.7	1350 ppm	1539 ppm	1728 ppm	1755 ppm	1890 ppm	2295 ppm	27
2.8	1400 ppm	1596 ppm	1792 ppm	1820 ppm	1960 ppm	2380 ppm	28
2.9	1450 ppm	1653 ppm	1856 ppm	1885 ppm	2030 ppm	2465 ppm	29
3.0	1500 ppm	1710 ppm	1920 ppm	1950 ppm	2100 ppm	2550 ppm	30
3.1	1550 ppm	1767 ppm	1984 ppm	2015 ppm	2170 ppm	2635 ppm	31
3.2	1600 ppm	1824 ppm	2048 ppm	2080 ppm	2240 ppm	2720 ppm	32

	Week 10 1	Week 9 1	Week 8 1	Week 7 1	Week 6 1	Week 5	Week 4	Week 3	Week 2	Week 1	Week p
0-400	1000-1300	1000-1300	1000-1300	1000-1300	1000-1300	800-1200	800-1200	800-1200	600-1000	400-600	ppm range
8-0	2-2.6	2-2.6	2-2.6	2-2.6	2-2.6	1.6-2.4	1.6-2.4	1.6-2.4	1.2-2	.8-1.2	EC Range
Flush	Ripening	Late flowering	Late flowering	Mid flowering	Mid flowering	Early flowering	Early flowering	Transition	Late vegetative	Early vegetative	Life cycle stage

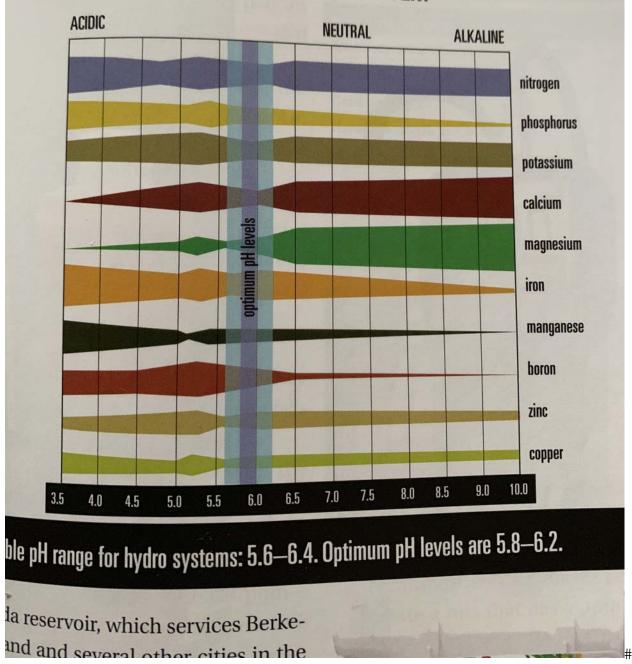
	60	61	62	63	64	65	66	67	89	69	70	71	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86			٩	
	Inde	n		<	2	64%	66%	67%	68%	69%	70%	71%	72%	73%	74%	75%	76%	76%	77%	78%	79%	79%	80%	81%	81%	82%	83%			0.75	
Grov	oor Agr		כ	U	N	62%	63%	65%	66%	67%	68%	69%	70%	71%	72%	73%	74%	75%	76%	76%	77%	78%	79%	79%	80%	81%	82%			0.80	
wth sta	ricultur		5	8		60%	61%	62%	64%	65%	66%	67%	%89	69%	70%	71%	72%	73%	74%	75%	76%	76%	77%	78%	79%	79%	80%		W	0.85	-
Growth stage values complements	Indoor Agricultural Division		<u>כ</u>	X	3	57%	59%	60%	62%	63%	64%	65%	66%	68%	69%	70%	71%	72%	73%	73%	74%	75%	76%	77%	77%	78%	79%		WEEKS 1 to 2	0.90	ELATIV
es com	sion			Ĉ		55%	56%	58%	59%	61%	62%	63%	65%	66%	67%	68%	69%	70%	71%	72%	73%	74%	75%	75%	76%	77%	78%		to 2	0.95	
plemen	43%	45%	47%	49%	51%	53%	54%	56%	57%	59%	60%	61%	63%	64%	65%	66%	67%	68%	69%	70%	71%	72%	73%	74%	75%	76%	77%			1.00	KELATIVE HOWIDTY VS. EMPERATORE AND VAPOR PRESSURE DIFFERENCE (VPD) CHART VAPOR PRESSURE DIFFERENCE IN KILOPASCAL (kPa) UNITS (For Millibar Units (mbar), Multiply Values Below by 10)
of	41%	43%	45%	47%	48%	50%	52%	54%	55%	57%	58%	59%	61%	62%	63%	65%	66%	67%	68%	69%	70%	71%	72%	73%	74%	74%	75%			1.05	PRESSU PRESSU
HIGHTIMES Magazine	38%	40%	42%	44%	46%	48%	50%	51%	53%	55%	56%	58%	59%	60%	62%	63%	64%	65%	66%	68%	69%	70%	71%	71%	72%	73%	74%	RE		1.10	VS. TENPERATURE AND VAPOR PRESSURE DIFERENCE IN KILOPASCAL (kPa) (R PRESSURE DIFFERENCE IN KILOPASCAL (kPa) ((For Millibar Units (mbar), Multiply Values Below by 10)
IES Mag	35%	37%	39%	41%	44%	45%	47%	49%	51%	52%	54%	56%	57%	59%	60%	61%	62%	64%	65%	66%	67%	68%	69%	70%	71%	72%	73%	RELATIVE HUMIDITY	WE	1.15	ERENC
-	32%	34%	37%	39%	41%	43%	45%	47%	49%	50%	52%	54%	55%	57%	58%	60%	61%	62%	63%	65%	66%	67%	68%	%69	70%	71%	72%	HUMID	WEEKS 3 to 4	1.20	E IN KIL
Skye Ha	29%	32%	34%	36%	39%	41%	43%	45%	47%	48%	50%	52%	53%	55%	56%	58%	59%	61%	62%	63%	64%	65%	67%	68%	69%	70%	72%	ITY	:04	1.25	OPASC Values B
inke an	26%	29%	31%	34%	36%	38%	40%	42%	44%	46%	48%	50%	52%	53%	55%	56%	58%	59%	60%	62%	63%	64%	65%	66%	67%	68%	%69			1.30	AL (kPa
d Harry	24%	26%	29%	31%	34%	36%	38%	40%	42%	44%	46%	48%	50%	51%	53%	54%	56%	57%	59%	60%	61%	63%	64%	65%	66%	67%	68%			1.35) UNIT 10)
Skye Hanke and Harry Resin,	21%	24%	26%	29%	31%	34%	36%	38%	40%	42%	44%	46%	48%	50%	51%	53%	54%	56%	57%	59%	60%	61%	63%	64%	65%	66%	67%			1.40	S
March	18%	21%	24%	26%	29%	31%	34%	36%	38%	40%	42%	44%	46%	48%	49%	51%	53%	54%	56%	57%	59%	60%	61%	62%	64%	65%	66%		Weeks	1.45	
March 09, 2017.	15%	18%	21%	24%	26%	29%	31%	34%	36%	38%	40%	42%	44%	46%	48%	49%	51%	53%	54%	56%	57%	58%	60%	61%	62%	64%	65%		Weeks 5 to 9	1.50	4
17.	12%	15%	18%	21%	24%	26%	29%	31%	34%	36%	38%	40%	42%	44%	46%	48%	49%	51%	53%	54%	56%	57%	58%	60%	61%	62%	63%			1.55	
	9%	13%	16%	19%	21%	24%	27%	29%	32%	34%	36%	38%	40%	42%	44%	46%	48%	50%	51%	53%	54%	56%	57%	59%	60%	61%	62%			1.60	
	60	61	62	63	64	65	66	67	68	69	70	71	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86		F	<mark>Ч</mark>	

Half Clear / Half Cloudy Harvesting when you have a 50/50 clear-cloudy mix will produce a more energetic or "heady" high

Cloudy - Highest THC levels

Harvesting when most trichomes are cloudy or milky will produce the greatest levels of THC and a euphoric high

Half Amber / Half Cloudy


Harvesting when you have a 50/50 ambercloudy mix will give you a combination of head & body high

Amber

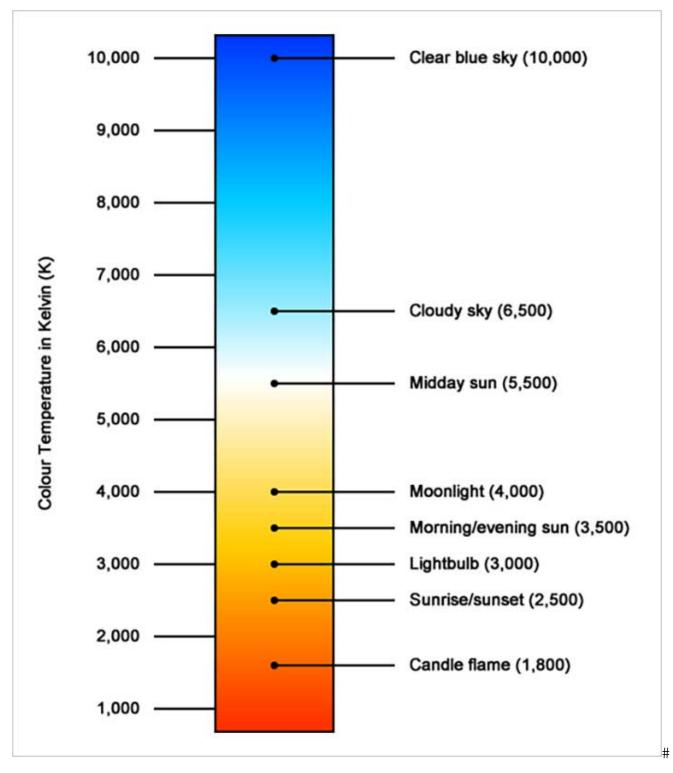
Harvesting when most trichomes are amber will produce a more body, cough-lock high

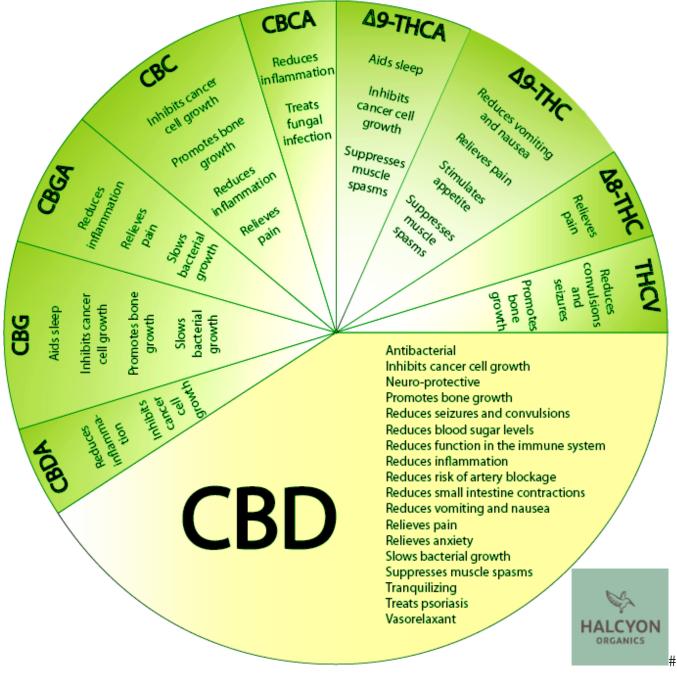
HYDRO-WATER SYSTEM

WATER	EC	РН	SOLUTION
STATIC	STATIC	STATIC	Plant not feeding/drinking, change EC, check meters. Usually, lowering the EC a little should get the plant feeding again
STATIC	STATIC	RISING	Ph buffers probably raising ph. This is usual. Having a static water level is not though, so again, a slight reduction in EC or a res change should resolve this.
STATIC	STATIC	FALLING	Usual cause of this is when media has been rinsed at a lower ph than you require. The other possibility is that too much CO2 has been pumped into the water. See Note 1. Change your res and look at the volume of air pumped plus look at your air source.
STATIC	RISING	STATIC	Plant is leeching nutrition, raise EC. Note 2
STATIC	RISING	RISING	Plant leeching nutrition, Raise EC. An unusual state. The rising ph is probably caused by what nutrient leeching back. If these are alkaline, it will lead to the rise in ph. Could also be ph buffers.
STATIC	RISING	FALLING	As above but be aware of the acid rain effect mentioned in note 1. Res change, plus increase in EC
STATIC	FALLING	STATIC	Plant eating but not drinking. Not ideal. Lower EC or res change
STATIC	FALLING	RISING	As above but rising ph is a better sign. Lower EC slightly or res change.
STATIC	FALLING	FALLING	Falling ph along with falling EC but no drop in water level suggests a res change. Could also be an acid rain effect as per note 1. Depending on other symptoms, lowering EC after res change.
FALLING	STATIC	STATIC	Perfect conditions. EC and ph are at the correct level.
FALLING	STATIC	RISING	Normal state most people encounter. Nothing to worry about, carry on doing what you are doing unless other plant symptoms.
FALLING	STATIC	FALLING	Res change plus a change of EC. Lower EC if over 1.4, raise EC if lower than 1.0
FALLING	RISING	STATIC	Plant is drinking more than eating, lower EC.
FALLING	RISING	RISING	Plant is drinking more than eating, lower EC
FALLING	RISING	FALLING	Plant is drinking more than eating, lower EC. Also, res change due to possible acid rain problem.
FALLING	FALLING	STATIC	Hungry plant, raise EC. Very good situation to be in. Nute buffers are working and plant is taking a balance of nutrients.
FALLING	FALLING	RISING	Almost as above, usually considered almost perfect, raise EC slightly.
FALLING	FALLING	FALLING	Res change. Potential acid rain issue but plant is still eating & drinking. Raise EC on new res.

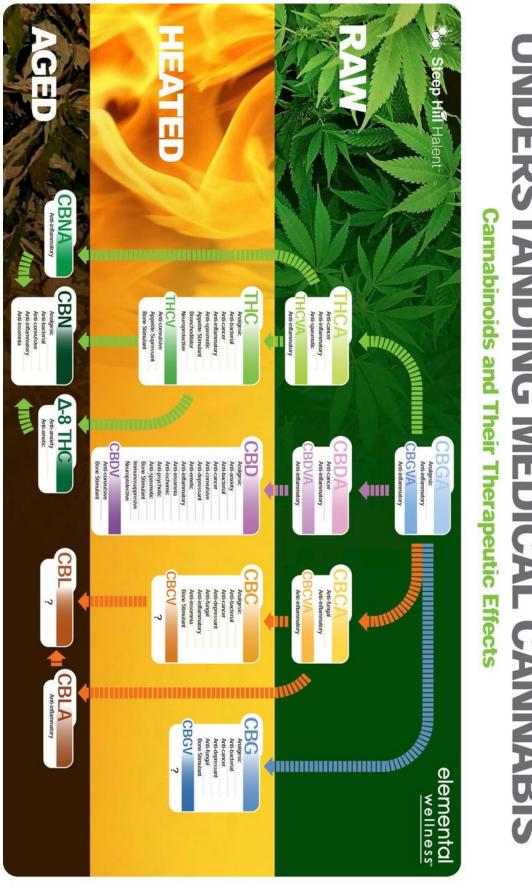
Light Source Ca	Calibration Factor
Sunlight 0.	0.0185
Cool White Fluorescent Lamps 0.	0.0135
Mogul Base High Pressure Sodium Lamps 0.0	0.0122
Dual-Ended High Pressure Sodium (DEHPS): ePapillion 1000 W 0.0	0.0130
Metal Halide 0.	0.0141
Ceramic Metal Halide (CMH942): standard 4200 K color temperature	0.0154

Lux to PPFD (μ mol m⁻² s⁻¹)

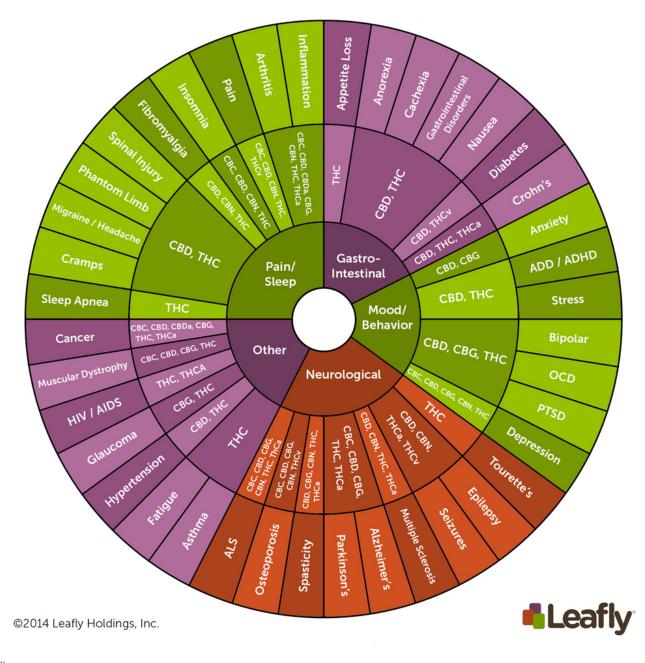

Lux to PPFD (μ mol m⁻² s⁻¹)

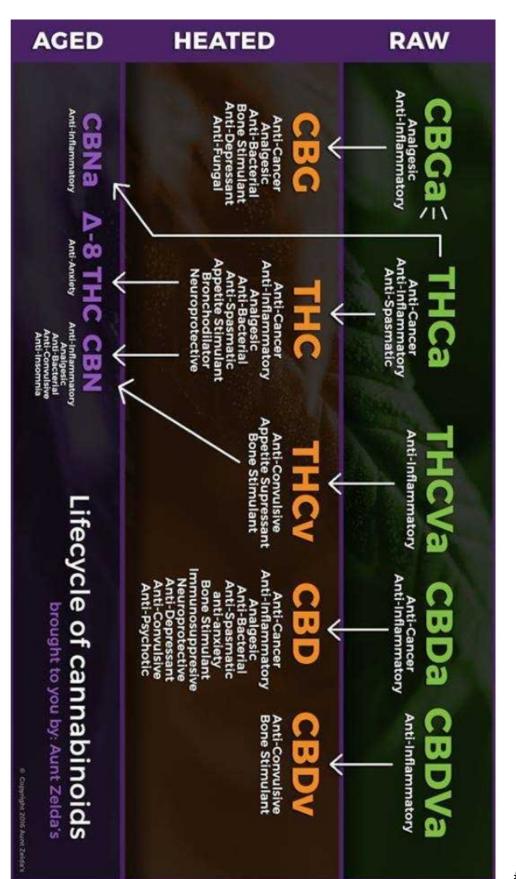

Light Source	Calibration Factor
Sunlight	0.0185
Cool White Fluorescent Lamps	0.0135
Mogul Base High Pressure Sodium Lamps	0.0122
Dual-Ended High Pressure Sodium (DEHPS): ePapillion 1000 W	0.0130
Metal Halide	0.0141
Ceramic Metal Halide (CMH942): standard 4200 K color temperature	0.0154
Ceramic Metal Halide (CMH930-Agro): 3100 K color temperature, spectrum shifted to red wavelengths	0.0170

Multiply the Lux by the conversion factor to get PPFD. For example, full sunlight is 108,000 Lux or 2000 μ mol m⁻² s⁻¹ (108,000 * 0.0185).


Multiply the Lux by the conversion factor to get PPFD. For example, full sunlight is 108,000 Lux or 2000 μ mol m ⁻² s ⁻¹ (108,000 \star 0.0185).	Ceramic Metal Halide (CMH930-Agro): 3100 K color temperature, spectrum shifted to red wavelengths	Ceramic Metal Halide (CMH942): standard 4200 K color temperature	Metal Halide	Dual-Ended High Pressure Sodium (DEHPS): ePapillion 1000 W	Mogul Base High Pressure Sodium Lamps	Cool White Fluorescent Lamps
, full sunlight	0.0170	0.0154	0.0141	0.0130	0.0122	0.0135

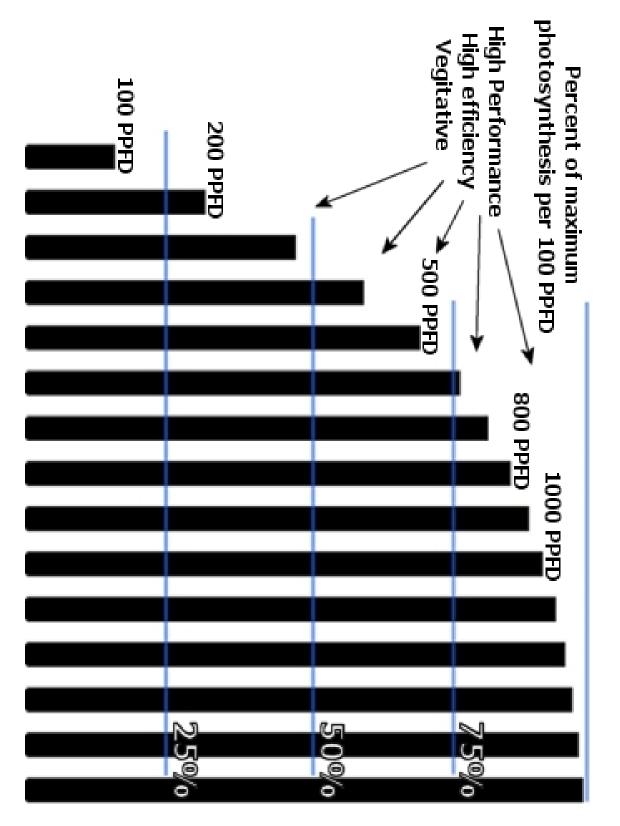
Simple	Hydroponic Systems	Pros	Cons
Wick Systems:	Grow Tray & Growing Medium Reservair Hick Air Stone	Affordable Low maintenance No nutrient pump	 Limited oxygen access Slower growth rate No nutrient recirculation Prone to algae growth
Deep Water Culture:	Reservoir, Reservoir, Air Stone	 Cheapest of the active systems Simple set up No nutrient pump Reliable 	 Risk of root rot if not cleaned regularly Slower growth rate Must top water until roots are long enough to fall into the nutrition solution Must frequently refill reservoir
Ebb & Flow:	Growing Medium Grow Tray Grow Tray Coverflow Timer Vutrient Pump Off Pump Off	Affordable Low maintenance Excess nutrient solution recirculates	Prone to algae growth Technical malfunctions could result in crop loss
Drip Method:	Grow Tray & Growing Medium Reservoir Air Stone	Excess nutrient solution recirculates Sufficient oxygen flow	 Prone to clogging Prone to algae growth Requires regular cleaning
Nutrient-Film Technique:	Reservoir Nutrient Pump Air Stone	• Excess nutrient solution recirculates • Plentiful oxygen flow • Space efficient	 Prone to clogging Technical malfunctions could result in crop loss
Aeroponics: Advanced	Mist Nozzle Reservoir Timer	Maximum nutrient absorption Excess nutrient solution recirculates Plentiful oxygen flow Space efficient	 Prone to clogging Technical malfunctions could result in crop loss High-tech Time intensive Poorly suited to thick organic-based nutrients & additives


UNDERSTANDING MEDICAL CANNABIS

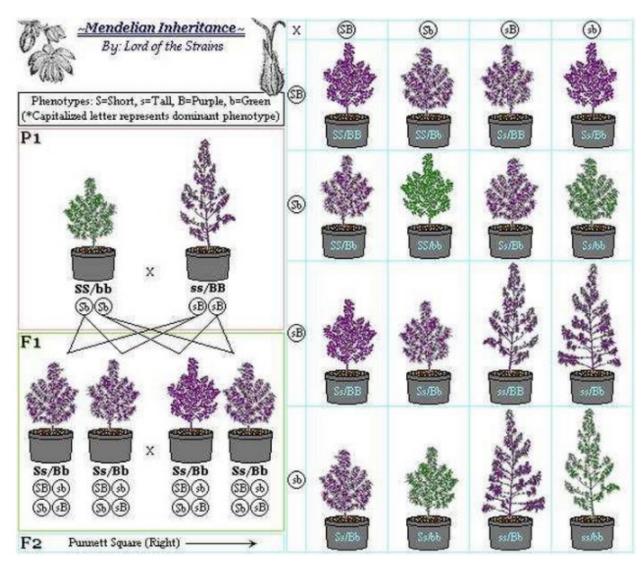

		B			A		(õ)
//	Heavy Indicas	Clear Indicas	Heavy Hybrids	Even Hybrids	Clear Hybrids	Heavy Sativas	Clear Sativas
	heavy psychoactive	awake clear		creative sociable	alert clear	psychoactive euphoric	MENTAL sociable clear
DATIENT'S LADE	sedative relaxing	relaxing calm		active	awake active	active energetic	EFFECTS FAL PHYSICAL ble energetic uplitting
	٢	0		0	0	6	0
	Midnight Grand Daddy Afghani Goo	Bubba Kush Northern Lights Master Kush	OG Kush Gorilla Glue #4 Girl Scout Cookies	S.A.C.E. Blue Bubble XJ-13	White Widow Blue Dream Silver Haze	Cherry AK Sour Diesel Trainwreck	TOP STRAINS Durban Lambsbread Jack Herer
	Myrcene dominant, rich in Beta-Caryophyllene and Linalool	Beta-Caryophyllene dominant, rich in Limonene and Myrcene		A balance of Limonene, Beta-Caryophyllene and Pinene	Myrcene dominant, rich in Pineen and Beta-Caryophyllene	Myrcene dominant, rich In Beta-Caryophyllene and Ocimene	ACTIVE TERPENES Terpinoline dominant. rich in Ocimene and Myrcene
	Fruity	Earthy		Floral	Pine	Sweet	FLAVOR
	Grounding	Life Energy		Compassion Love	Communication Creation	Insight Wisdom	ENERCY Transcendence
	Analgesic, anti-inflammatory, anti-insomnia, antispasmodic	Anti-inflammatory, anti-proliferative, neuroprotective, anxiolytic		Antidepressant, analgesic, anxiolytic, anti-inflammatory	Analgesic, anti-Inflammatory, anti-proliferative, bronchodilator	Analgesic, appetite stimulant, anti-Inflammatory, anti-spasmodic	MEDICAL USES* Anti-proliferative, anti-ordiferative, anti-emetic

CANNABIS CANNABINOID & TERPENE DISEASE TARGETS

Temperatures	Cannabinoids	Treatments	+ Compounds	Treatments
Range 140° - 257°f 248° f	Tetrahydrocannabinol THCA Acid Conversion	 Requires 30 mins. in the oven. When eaten raw (unheated.) Anti-inflammatory, Anti-epileptic, and Anti-proliferic. 	+ Cannabigerol + CBG (Converted CBGA)	Conversion occurs while curing. > Anti-inflammatory, > Analgesic, Anti-bacterial, > Anti-fungal, Bone stim., > and Anti-proliferic.
Range 176° - 275°f 266°f	Cannabidiol CBDA Acid Conversion	 Requires 60 mins. in the oven. When caten raw (unheated.) Anti-proliferic, and Anti-inflammatory. Not fully elucidated. 	+β-caryophyllene 1 st Med Vapour During CBD conversion.	Anti-malarial, Cytoprotective, and Anti-inflammatory. Increases CBD, and CBN content.
Range 212° - 293°f 284°f	Cannabichroniene CBCA Acid Conversion	 Requires 60 mins. in the oven. When eaten raw (unheated:) > Anti-bacterial, and > Anti-fungal. > Not fully clucidated. 	+ β-sitosterol 2 nd Med Vapour During CBC conversion.	Anti-inflammatory, and 5-α-reductase inhibitor. Increases CBC, and CBE content.
Boil Point 315°f 311° f	Tetrahydrocannabinol THC Delta 9 (Δ-9)	 Anti-inflammatory, Apetite stimulant, Anti-emetic, Anti-proliferic, and Anti-oxidant, 	+ α-pinene Daytime Wedz	With CBD, treats MRSA, Anti-inflammatory, Bone stimulant, Anti-biotic, Bronchodilator, and Anti-neoplastic.
Range 320° - 356°f 329° f	Cannabidiol CBD Excludes Δ-8	 Most conditions listed, <u>excluding</u> the following: Anti-insomnia. Anti-fungal, and Apetite stimulant. 	+ β-myrcene Daytime Weds +Δ-3-carene	Analgesic, Anti-biotic, Anti-mutagenic, and Anti-inflammatory. Anti-inflammatory.
Boil Point 351°f 347°f	Tetrahydrocannabinol THC Delta 8 (Δ-8)	The ∠-8 cannabinoid model lead to the HU-210 from Hebrew University. > Non-psychoactive. > Neuroprotective. > and Anti-emetic.	+ eucalyptol + limonene + ρ-cymene + apigenin	Blood blood flow stimulant. Anti-depressant, & Agonist. Anti-biotic, & Anti-candidal Estrogenic, & Anxiolytic.
Boil Point 365°f 365°f	Cannabinol CBN THC degradation	CBN increases with the prolonged exposure to heat, axygen, and time. > Anti-spasmodic, > Anti-insomnia, and > Analgesic.	+ cannaflavin A - <i>Nightime Meds</i> - Norvin Payourite	COX inhibitor, and LO inhibitor. Pending device temperature error.
Boil Point - Theory 383°f	Cannabielsoin CBE CBD degradation	CBE increases with the prolonged exposure to heat, oxygen, and time Likely to contain cannabinoids other than CBE. Intended to show the maximum medicinal temperature.	+ linalool Wightime Weds Club Fayourite	Sedative, Anti-depressant, Anxiolytic, and Immune potentiator (like limonene.)
High Benzene Level 401°f	* Hydrocarbons * Benzene * Avoid vapours *	WARNING Toxic Vapours at 392°f. Harmful smoke toxins begin: www.canorml.org/health/vaporizers	+ terpinen-4-ol - <i>Smoke ≥ Vapour</i> + borneol	Antibiotic, and AChE inhibitor (like ρ-cymene.) Antibiotic.
Boil Point < 428°f 428° f	Tetrahydrocannabivarin THCV Blocks THC	 > Euphoriant, Anti-THC. > Analgesic, > Anti-diabetic, > Anorectic, and > Bone stimulant. 	+ α-terpineol - <i>Smoke≥ Vapour</i> - Ready to consume	Sedative, Anti-biotic, Anti-oxidant, and Anti-malarial. Reduce toxins by consuming.
Boil Point 428°f 428° f	Cannabichromene CBC Includes THCV	 Anti-proliferative, Anti-bacterial, Bone stimulant, Anti-inflammatory, and Analgesic. 	+ pulegone + quercetin Smoke ≥ Vapour	Sedative, and Anti-pyretic. Anti-mutigenic, Anti-viral, Anti-oxidant, and Anti-neoplastic.
Quick Reference M	dedical Chart -> V	apourizer Cannabinoid Temp	erature Dial [®] Æ 2014,	Virtually Real Applications


• DECARBOXYLATION TEMPERATURES AND TIMES •

Temperature	Heating	Plant Mat	erial Time	Kief/H	ash Time	Cannabis Oil
+/-5F	mode	High THC	High CBD	High THC	High CBD	Time
300 F	Oven	10-18 minutes	15-25 minutes	5-10 minutes	10-15 minutes	
250 F	Hot oil bath					Until bubbles taper off
245 F	Oven	50-60 minutes	60-90 minutes	30-40 minutes	40-50 minutes	
212 F	Boiling water bath	90-120 minutes	2-4 hours	90-120 minutes	2-4 hours	


#

Strength of Cannabis (assuming neglible canabidiol)	Daily dosage of cannabis corresponding to 2.5 - 90 mg of THC	
10% THC	.15 g . 5.55g	
15% THC	.12 g . 3.69g	
20% THC	.08 g . 2.79g	
25% THC	.04 g . 2.25g	
30% THC	.01 g . 1.86g	

#

	Establishment			
Species	Seed	Vegetative Cutting	Vegetative	Reproductive
Cannabis	100-300	75-150	300-600	600+
Tornatoes	150-350	75-150	350-600	600+
Cucumbers	100-300		300-600	600+
Peppers	150-350		300-600	600+

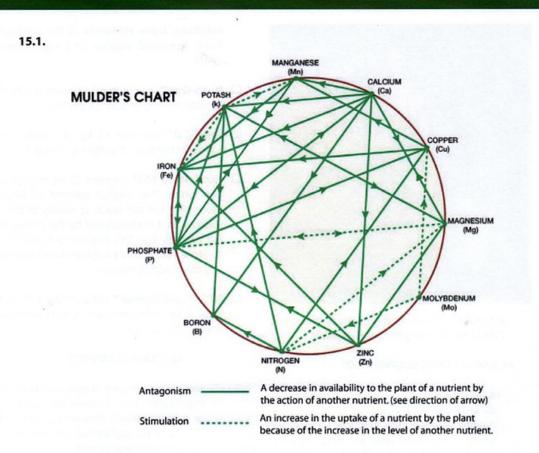


Figure 2: Mulder's Chart

This chart graphically highlights some of the complex inter-relationships between the different elements. It also illustrates the critical importance of **balance**. The simplistic N-P-K concept, involving copious amounts of just three elements piled on indiscriminately, is revealed to be hopelessly inadequate when we consider these complex relationships.

In this context the symptoms of a particular deficiency may not mean that there is a shortage of the element in question. It is more often the case that excesses of other elements have shut down the availability of the element which appears to be deficient.

Iron is a good example. **Chlorosis** is a condition which suggests an iron deficiency, but the soil analysis will invariably suggest otherwise. The fact is that iron deficiency can be induced by too much calcium or too much zinc, copper, manganese or phosphorus (see chart). These elements in excess are **antagonistic** to the uptake of iron. The fascinating thing here is that the problem can be solved without the addition of **iron**. In fact, in this case, the addition of a completely different element **potassium**, which stimulates iron uptake, can solve the iron deficiency problem. Professor Mulder's chart should be kept accessible for easy reference, so you can gain maximum benefits from this enlightening information.

15.2. TRACE ELEMENT SOURCES

- NTS trace element sources include the following:
- Micro-nutrients in the sulphate form ie iron sulphate, manganese etc.
- 15.2.2. Nutri-Key Shuttle[™] Range Chelated trace elements using the Shuttle System[™] to deliver nutrients directly to the plant. The Shuttle System is a major breakthrough in chelation nutrition. In conventional chela-

14

ŧ